

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2016
Lab 07 – Lists

Assignment: Lab 07 – Lists
Due Date: Thursday, October 20th by 8:59:59 PM
Value: 10 points

Lab 7 focuses on using lists and loops, but is also a review of much of the
material we have covered so far. Completing Lab 7 prior to the midterm
exam is highly recommended.

Although understanding individual concepts is very important, being able to
put them together in new and interesting ways is what will allow you to create
interesting computer programs.

To complete this lab you will need to use lists, indexing, for loops, user input,
interactive while loops (sentinel loops), decision structures (if/elif/else),

and print() statements. Because much of this material has been covered

in previous labs, the pre-lab review will be shorter than normal, and may
contain material from previous lab descriptions.

CMSC 201 – Computer Science I for Majors Page 2

Part 1: Lists and Indexing

Lists are an easy way to hold lots of individual pieces of data without needing
to make lots of variables. They are a type of data structure, which are
specialized ways of organizing and storing data.

In order to get a specific variable, or element, from a list, we need to access
that index of the list. NOTE: Lists don’t starting counting from 1 – the first
element in the list is at index 0.

For example, the following line of code creates a list called names:

names = ["Aya", "Brad", "Carlos", "David", "Emma"]

Which creates the list (called names) below:

Aya Brad Carlos David Emma

0 1 2 3 4

Part 2: For Loops

We can use for loops to iterate over a list – this means moving through a

list, one element at a time.

For example:

list_of_fruits = ["kiwi", "banana", "peach"]

for fruit in list_of_fruits:

 print("I ate a", fruit)

When run, the code above will print the following:
I ate a kiwi

I ate a banana

I ate a peach

CMSC 201 – Computer Science I for Majors Page 3

Sometimes we may want to display a list and number its contents. The
easiest way to do this is to use range to generate a list of the list’s indexes

(from 0 to the length of the list minus 1). We then use this in a for loop,

and use the loop variable as both the index to access each element, and as a
counter of how many elements have been accessed so far.

subjects = ["dragonology", "chem", "english", "bio"]

we want to loop over the length of the list

for i in range(len(subjects)):

 # numbering will start at 0

 print(i + 1, ":", subjects[i])

When run, the code above will print the following:

1 : dragonology

2 : chem

3 : english

4 : bio

Part 3: While Loops

A while loop statement in Python repeatedly executes a target statement as

long as a given Boolean condition evaluates to True.

The syntax of a while loop in the Python programming language is:

while condition:

 statement(s)

Here, statement(s) may be a single statement or a block of statements.

The condition can be any expression, as long as it evaluates to either True

or False. (Remember, any non-zero value is seen as “True” by Python.)

The while loop continues to run as long as (while) the condition is still True.

CMSC 201 – Computer Science I for Majors Page 4

Part 4: Sentinel Loops

Another way to use a while loop is as a sentinel loop. A sentinel loop

continues to process data until reaching a special value that signals the end
of the data. The special value is called the sentinel.

Here is the pseudocode for a sentinel loop in Python:

Get the first data item from the user

While data item is not the sentinel

 Process the data item

 Get the next data item from the user

One of the scenarios in which we can implement this type of loop is a version
of our grocery list program that allows us to enter as many items as we like.
Although it is similar to previous versions, the interactive (sentinel) while loop
of the grocery list program allows us to enter as many items as we like until
the sentinel value of "exit" is entered.

def main():

 grocery_list = [] # initialize the list to be empty
 # get the initial user value

 userVal = input("Enter an item, or 'exit' to end: ")

 # run the while loop until the user enters "exit"

 while userVal != "exit":

 grocery_list.append(userVal)

 # get another value from the user

 userVal = input("Enter an item, or 'exit' to end: ")

 # once the user is done with the list, print it out

 for g in grocery_list:

 print("Remember to buy", g)

main()

CMSC 201 – Computer Science I for Majors Page 5

Part 5A: Writing Your Program

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab7, and go inside the newly created lab7

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab7

linux2[5]% cd lab7

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab7

linux2[7]% █

To open the file for editing, type
 emacs games.py

and hit enter.

The first thing you should do in your new file is create and fill out the
comment header block at the top of your file. Here is a template:

File: games.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

Collaboration: During lab, collaboration between

students is allowed, although I understand I still

must understand the material and complete the

assignment myself.

Now you can start writing your code for the lab, following the instructions in
Parts 5B and 5C.

CMSC 201 – Computer Science I for Majors Page 6

Part 5B: Printing the Game Options

For Lab 7, you will be writing up a short program to help the user and their
friends decide what game to play. The program will print out the list of
possible games, and then everyone can vote on which game they would like
to play. The program will close voting if someone enters “0” as their choice,
and will output the total votes for each game.

You will be coding Lab 7 in an incremental manner – in other words, you will
code up one piece of the lab and test that it works before moving on to the
next piece. Incremental development is a very effective way of tackling a
problem, in part because it makes it easier to pinpoint where an error occurs,
since you are only working on a small part of the code at a time.

The first piece of code we will write is printing the games. Copy the list
below, games, into your program.

games = ["Twister", "Dodgeball", "Capture the Flag",

"Hide and Seek", "Croquet", "Ring Toss", "Ping Pong"]

To print the inventory, you should write code that will print two different things
on each line:

 The number of the game (start counting from 1)

 The game’s name (e.g., Twister, Dodgeball, etc.)

When you have completed this, the output should look something like this:

bash-4.1$ python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

(There are hints on the next page if you need them.)

CMSC 201 – Computer Science I for Majors Page 7

Try to solve Part 5B on your own before you turn to these hints!

Having trouble making the numbering start at 1 instead of 0?
Remember that the index of a list begins counting at 0. Also recall that the
range() function starts at 0 by default. If you are printing the current index

as the number, you will start at 0 – in order to start counting at 1, you will
need to print something like index + 1.

CMSC 201 – Computer Science I for Majors Page 8

Part 5C: Voting for a Game
Do not move on to this part until your program can print the games!

Once you have one piece of your program working, we can focus on the next
task. Now that the games can be displayed, we need to allow the user and
their friends to actually vote!

For now, we won’t worry about storing the votes. Just write the code that will
allow the user to vote, and will stop when they enter a “0” to quit. If they
make an invalid choice, you do not need to reprompt the user – simply
ignore the invalid choice.

Here is a sample run of the store program, with user input in blue.
(If you need some help, hints are available after this sample output.)

bash-4.1$ python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

What game would you like to play? (0 to quit): 7

What game would you like to play? (0 to quit): 6

What game would you like to play? (0 to quit): 9

What game would you like to play? (0 to quit): 1

What game would you like to play? (0 to quit): 0

CMSC 201 – Computer Science I for Majors Page 9

Try to solve Part 5C on your own before you turn to these hints!

Are you stuck on how to interact with the user?
Take a look at the example on page 4 of a sentinel loop (an interactive while
loop). You should use the same basic code setup to allow the user to keep
voting until they choose to quit by entering “0”.

CMSC 201 – Computer Science I for Majors Page 10

Part 5D: Storing Game Votes
Do not move on to this part until your program can accept votes correctly!

Now that you can accept votes, we need to store the votes. We’ll store the
votes for the games in another, separate list of integers. The list of votes
should correspond directly to the list of games: the votes at a given index
should be for the game stored at that same index in the games list.

Remember, list indexing starts at 0, but we’re presenting the choices to the
user starting at 1, so the way you store votes will need to compensate for this
offset. You’ll also need to make sure you handle invalid input correctly –
don’t try to count a vote for option #282, when there are only 7 choices!

At the end, print out the list of votes, so you can ensure your program is
working correctly.

Here is a sample run of the store program, with user input in blue.
(If you need some help, hints are available after this sample output.)

bash-4.1$ python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

What game would you like to play? (0 to quit): 9

What game would you like to play? (0 to quit): -1

What game would you like to play? (0 to quit): 5

What game would you like to play? (0 to quit): 3

What game would you like to play? (0 to quit): 1

What game would you like to play? (0 to quit): 2

What game would you like to play? (0 to quit): 2

What game would you like to play? (0 to quit): 7

What game would you like to play? (0 to quit): 0

Votes list is: [1, 2, 1, 0, 1, 0, 1]

CMSC 201 – Computer Science I for Majors Page 11

Try to solve Part 5D on your own before you turn to these hints!

Stuck on how to store the user’s votes?
You need a list of the same length as the number of games. It should be a
list of integers, and since this is something we’re using to count, they should
all be initialized to zero.

Still stuck on how to store the user’s votes?
Try creating a votes variable that contains exactly as many zeroes as the
number of games. Something like this would work:

votes = [0] * len(games)

Is your program counting the user’s vote for the wrong game?
Remember, the user’s numbering starts at 1, but the indexing in a list starts at
0. If a user chooses to vote for game #3, the votes for that game are stored
at votes[2], not votes[3].

Having trouble seeing the “big picture” of how your program should work?
Try drawing a quick flowchart or planning out what needs to happen on paper
in pseudocode. Don’t worry about the specific details, just try to visualize
what needs to happen overall. How do you stop once the user wants to quit?
When do you need to ignore a user’s vote? How are the votes stored?
When do variables need to be initialized?

CMSC 201 – Computer Science I for Majors Page 12

Part 5E: Displaying the Votes
Do not move on to this part until your program can store the votes correctly!

Now let’s display the final votes for each games. (If your code that asks for
and stores votes doesn’t work correctly, you might also have to do some
debugging. That’s how programming works, sometimes!)

Once the user has entered “0” in order to stop voting, you need to go through
the list and print out the number of votes each game earned. You will need to
iterate through both of the lists in order to print out the game name and the
number of votes it received.

IMPORTANT NOTE: You do not need to worry about figuring out which game
won. Although this would be great practice to do for the exam!
(If you need some help, the hints are available after this sample output.)

bash-4.1$ python games.py

1 - Twister

2 - Dodgeball

3 - Capture the Flag

4 - Hide and Seek

5 - Croquet

6 - Ring Toss

7 - Ping Pong

What game would you like to play? (0 to quit): 2

What game would you like to play? (0 to quit): 2

What game would you like to play? (0 to quit): 7

What game would you like to play? (0 to quit): 6

What game would you like to play? (0 to quit): 2

What game would you like to play? (0 to quit): 1

What game would you like to play? (0 to quit): 0

Twister has 1 votes

Dodgeball has 3 votes

Capture the Flag has 0 votes

Hide and Seek has 0 votes

Croquet has 0 votes

Ring Toss has 1 votes

Ping Pong has 1 votes

CMSC 201 – Computer Science I for Majors Page 13

Try to solve Part 5E on your own before you turn to these hints!

Are you stuck on how to print elements from two lists at the same time?
Because we want to print two lists at once, we cannot use a loop that iterates
over a single list’s contents. Instead, we can look at the same index in both
lists to print out the game and the votes it received.

Still stuck on how to print two lists at once?
You will want to use a loop similar to the one at the top of page 3. It should
iterate over a range that is the length of one of the lists. (The two lists in your
program should be the same length, so it doesn’t matter which one you use
for the range.)

CMSC 201 – Computer Science I for Majors Page 14

Part 6: Completing Your Lab

To test your program, make sure you’ve enabled Python 3, then run
games.py. Try a few different inputs to see how well your program works.

Submitting

Since this lab is not an in-person lab, you will need to use the submit

command to turn your completed lab in.

Once your games.py file is complete, it is time to turn it in with the submit

command, where the class is cs201, and the assignment is LAB7. Type in

(all on one line) submit cs201 LAB7 games.py and press enter.

linux1[4]% submit cs201 LAB7 games.py

Submitting games.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your lab assignment was submitted by following the
directions in Homework 0. Double-check that you submitted your lab
assignment correctly, since an empty file will result in a grade of zero for
this assignment.

